In [1]:
import d2l
from mxnet import gluon, init
from mxnet.gluon import loss as gloss, nn
The Model

In [2]:
net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
Training

In [3]:

 batch_size = 256
 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

 loss = gloss.SoftmaxCrossEntropyLoss()
 trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})
 num_epochs = 10
 d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
 None, None, trainer)

 epoch 1, loss 0.8333, train acc 0.688, test acc 0.817
 epoch 2, loss 0.5031, train acc 0.815, test acc 0.829
 epoch 3, loss 0.4303, train acc 0.842, test acc 0.860
 epoch 4, loss 0.3942, train acc 0.855, test acc 0.857
 epoch 5, loss 0.3694, train acc 0.864, test acc 0.873
 epoch 6, loss 0.3534, train acc 0.869, test acc 0.864
 epoch 7, loss 0.3410, train acc 0.873, test acc 0.875
 epoch 8, loss 0.3221, train acc 0.880, test acc 0.883
 epoch 9, loss 0.3158, train acc 0.884, test acc 0.882
 epoch 10, loss 0.3083, train acc 0.885, test acc 0.885