
homework8

April 9, 2019

1 Homework 8 - Berkeley STAT 157

Your name: XX, SID YY, teammates A,B,C (Please add your name, SID and teammates to ease
Ryan and Rachel to grade.)

Please submit your homework through gradescope
Handout 4/9/2019, due 4/16/2019 by 4pm.
This homework deals with sequence models for text and numbers. Due to the computational

cost, we strongly encourage you to implement this on a GPU enabled machine. To make things a
bit more interesting we will use a larger text collection here - Shakespeare’s collected works which
are freely downloadable at Project Gutenberg.

This is teamwork.

1.1 Prerequisites - Load Data

In [1]: import urllib3
import collections
import re
shakespeare = 'http://www.gutenberg.org/files/100/100-0.txt'

http = urllib3.PoolManager()
text = http.request('GET', shakespeare).data.decode('utf-8')
raw_dataset = ' '.join(re.sub('[^A-Za-z]+', ' ', text).lower().split())

print('number of characters: ', len(raw_dataset))
print(raw_dataset[0:70])

number of characters: 5032359
project gutenberg s the complete works of william shakespeare by willi

This dataset is quite a bit bigger than the time machine (5 million vs. 160k). For convenience
we also include the remaining preprocessing steps. A bigger dataset will allow us to generate
more meaningful models.

In [5]: idx_to_char = list(set(raw_dataset))
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
vocab_size = len(char_to_idx)
corpus_indices = [char_to_idx[char] for char in raw_dataset]

1

http://gradescope.com/
http://www.gutenberg.org/files/100/100-0.txt

sample = corpus_indices[:20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)

train_indices = corpus_indices[:-100000]
test_indices = corpus_indices[-100000:]

chars: project gutenberg s
indices: [21, 19, 22, 10, 26, 24, 13, 3, 12, 9, 13, 26, 20, 4, 26, 19, 12, 3, 5, 3]

Lastly we import other useful libraries to help you getting started.

In [6]: import d2l
import math
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import loss as gloss, nn, rnn
import time

4932359 100000

1.2 1. Train Recurrent Latent Variable Models

Train a number of different latent variable models using train_indices to assess their perfor-
mance. By default pick 256 dimensions for the hidden units. You can use the codes provided in
the class. Also, we strongly encourage you to use the Gluon implementation since it’s a lot faster
than building it from scratch.

1. Train a single-layer RNN (with latent variables).
2. Train a single-layer GRU.
3. Train a single-layer LSTM.
4. Train a two-layer LSTM.

How low can you drive the perplexity? Can you reproduce some of Shakespeare’s finest writ-
ing (generate 200 characters). Start the sequence generator with But Brutus is an honorable
man. Experiment with a number of settings:

• Number of hidden units.
• Embedding length.
• Gradient clipping.
• Number of iterations.
• Learning rate.

Save the models (at least in memory since you’ll need them in the next exercise.

1.3 2. Test Error

So far we measured perplexity only on the training set.

1. Implement a perplexity calculator that does not involve training.
2. Compute the perplexity of the best models in each of the 4 categories on the test set. By how

much does it differ?

2

1.4 3. N-Gram Model

So far we only considered latent variable models. Let’s see what happens if we use a regular N-
gram model and an autoregressive setting. That is, we aim to predict the next character given the
current characters one character at a time. For this implement the following:

1. Split data into (x, y) pairs as before, just that we now use very short subsequences, e.g. only
5 characters. That is, But Brutus turns into the tuples ((But B, r), (ut Br, u), (t Bru,
t), (Brut, u), (Brutu, s)).

2. Use one-hot encoding for each character separately and combine them all.

• In one case use a sequential encoding to obtain an embedding proportional to the length
of the sequence.

• Use a bag of characters encoding that sums over all occurrences.

3. Implement an MLP with one hidden layer and 256 hidden units.
4. Train it to output the next character.

How accurate is the model? How does the number of operations and weights compare to an
RNN, a GRU and an LSTM discussed above?

3

	Homework 8 - Berkeley STAT 157
	Prerequisites - Load Data
	1. Train Recurrent Latent Variable Models
	2. Test Error
	3. N-Gram Model

