2/23/2019

Multiple Input and Output Channels

Multiple Input Channels

Kernel

channels slides

Output

56

72

104

120

Input Kernel Input
112
415
0|1]2 e 7|8

31415 * -
213 0|1

61718

3|4
6|7

In [1]: import d21
from mxnet import nd

def corr2d multi in(X, K):

First, traverse along the 0Oth dimension (channel dimension) of X and K.

Then, add them together by using *

return nd.add n(*[d2l.corr2d(x, k) for x, k in zip(X, K)])

http://127.0.0.1:8000/channels slides.html ?print-pdf/#/

1/6

2/23/2019 channels slides

We can construct the input array X and the kernel array K of the above diagram to validate
the output of the cross-correlation operation.

In [2]: X = nd.array([[[O0, 1, 21, [3, 4, 51, [6, 7, 8]1,
(ri, 2, 31, (4, 5, 61, [7, 8, 9]111)

K = nd.array([[[0, 1], [2, 311, [[1, 21, [3, 41]1])

corr2d multi_ in(X, K)

out[2]: [[56. 72.]
[104. 120.1]

<NDArray 2x2 @cpu(0)>

http://127.0.0.1:8000/channels slides.html ?print-pdf/#/ 2/6

2/23/2019 channels slides

Multiple Output Channels

For multiple output channels we simply generate multiple outputs and then stack them

together.
In [3]: def corr2d multi in out(X, K):
Traverse along the 0Oth dimension of K, and each time, perform cross-correlat
ion

operations with input X. All of the results are merged together using the st
ack function.

return nd.stack(*[corr2d multi in(X, k) for k in K])

We construct a convolution kernel with 3 output channels by concatenating the kernel
array K with K+1 (plus one for each element in K) and K+2.

In [4]: K = nd.stack(K, K + 1, K + 2)
K.shape

Out[4]: (31 2! 2! 2)

http://127.0.0.1:8000/channels slides.html ?print-pdf/#/ 3/6

2/23/2019

We can have multiple input and output channels.

In [5]: print(X.shape)
print (K.shape)

print(corr2d multi in out(X, K))

(2, 3,
(3, 2,

[[[56.
[104.

[[76.
[148.

[[96.
[192.

3)
2, 2)

72.]
120.1]

100.]
172.1]

128.]
224.11]

<NDArray 3x2x2 @cpu(0)>

http://127.0.0.1:8000/channels.slides.html?print-pdf/#/

4/6

2/23/2019 channels slides

1 X 1 Convolutions

Input Kernel Output

In [6]: def corr2d multi in out 1x1(X, K):
c i, h, w = X.shape
c_o = K.shape[O0]
X.reshape((c_i, h * w))
K.reshape((c_o, c 1))
Y = nd.dot(K, X) # Matrix multiplication in the fully connected layer.
return Y.reshape((c_o, h, w))

=N X
nn

This is equivalent to cross-correlation with an appropriately narrow 1 X 1 kernel.

In [7]: X = nd.random.uniform(shape=(3, 3, 3))
K = nd.random.uniform(shape=(2, 3, 1, 1))

Y1l = corr2d multi in out 1x1(X, K)
Y2 corr2d multi_in out(X, K)

(Y1l - Y2).norm().asscalar() < le-6

Oout[7]: True

